Anton Oliynyk

Assistant Professor, Chemistry & Biochemistry

  • solid state chemistry
  • X-ray crystallography
  • intermetallics
  • materials
  • machine learning


postdoc, University of Houston

PhD, University of Alberta, Canada

Courses Taught

  • CHEM 101: General Chemistry I
  • CHEM 102: General Chemistry II
  • CHEM 111: Nanoscience I
  • CHEM 112: Introduction to Materials Chemistry
  • CHEM 336: Inorganic Chemistry Laboratory
  • CHEM 460: Chemical Research
  • Research

    Solid state chemistry is the study of composition-structure-property relationship of solid phase materials.  Specifically, in our group, we study alloys and intermetallic compounds.  These compounds are formed by metals or metal-like elements.  Intermetallics could be used in energy conversion devices and electronics, magnets, drill bits, or even for jewelry.  These studies are different from traditional chemistry with flasks and liquids.  In fact, our research spans across multiple disciplines such as chemistry, engineering, and materials science.  Some of the projects that you might be interested are listed below.

    Exploratory synthesis: make new chemical compounds and characterize their structure with X-ray diffraction methods to find a potential application in energy conversion devices (solar cells or thermoelectric).

    Mechanical property optimization: improve hardness and mechanical wear resistance of the materials that will be used for cutting, drilling, and polishing in industry.  Gradually changing the composition of a given compound, we can make the bonds in the structure stronger, and as a result, improve the hardness.

    Colored intermetallics: synthesize and characterize novel metal compounds that have color luster.  These might be potential alloys for jewelry, or components of electronics as semiconductors, since the origin of the color stems from the bonding in these solids.


  • Publications and Scholarly Activities

    Google Scholar link


    Publications as an assistant professor (Manhattan College affiliation)

    44. Abou-Ghanem, M.; Oliynyk, A.O.; Chen, Z.; Matchett, L.; McGrath, D.; Katz, M.; Locock, A.; Styler, S.  Photoenhanced ozone uptake by natural titanium-containing minerals: implications for atmospheric mineral dust photochemistry. 

    43. Thiessen, A.N.; Zhang, L.; Oliynyk, A.O.; Yu, H.; O’Connor, K.M.; Meldrum, A.; Veinot, J.G.C. A Tale of Seemingly “Identical” Silicon Quantum Dot Families: Structural Insight into Silicon Quantum Dot Photoluminescence.  Submitted.

    42. Karmakar, A.; Alkiviathes, M.; Oliynyk, A.O.; Michaelis, V. Tailorable Indirect to Direct Bandgap Double Perovskites with Bright White-Light Emission: Decoding Chemical Structure using Solid-State NMR.  Submitted.

    41. Saal, J.E.; Oliynyk, A.O.; Meredig, B. Machine learning in materials discovery: Confirmed predictions and their underlying approaches. Accepted.

    40. Hossain, M.A.; Javadi, M.; Yu, H.; Thiessen, A.N.; Ikpo, N.; Oliynyk, A.O.; Veinot, J.G.C. Dehydrocoupling – An Alternative Approach to Functionalizing Germanium Nanoparticle Surfaces. Nanoscale 12, 2020. [DOI]

    39. Oliynyk, A.O.; Buriak, J.M. Virtual Issue on Machine-Learning Discoveries in Materials Science. Chemistry of Materials 31, 2019, 8243–8247. [DOI]


    Publications as a research associate (University of Alberta affiliation)

    38. Matlinska, M.A.; Ha, M.; Hughton, B.; Oliynyk, A.O.; Iyer, A.K.; Bernard, G.M.; Lambkin G.; Lawrence, M.C.; Katz, M.J.; Mar, A.; Michaelis, V.K. Alkaline Earth Metal–Organic Frameworks with Tailorable Ion Release: A Path for Supporting Biomineralization. ACS Applied Materials & Interfaces 11, 2019, 32739–32745. [DOI]

    37. Zhou, Y.; Iyer, A.K.; Oliynyk, A.O.; Heyberger, M.; Lin, Y.; Qui, Y.; Mar, A. Quaternary rare-earth sulfides RE3M0.5M'S7 (M = Zn, Cd; M' = Si, Ge). Journal of Solid State Chemistry 278, 2019, 120914. [DOI]

    36. Gzyl, A.S.; Oliynyk, A.O.; Adutwum, L.A.; Mar, A. Solving the Coloring Problem in Half-Heusler Structures: Machine-Learning Predictions and Experimental Validation. Inorganic Chemistry 58, 2019, 9280–9289. [DOI]

    35. Schmidt, M.; Jansen van Beek, S.M.; Abou-Ghanem, M.; Oliynyk, A.O.; Locock, A.J.; Styler, S.A. Production of Atmospheric Organosulfates via Mineral-Mediated Photochemistry. ACS Earth and Space Chemistry 3, 2019, 424–431. [DOI]

    34. Mumbaraddi, D.; Iyer, A.K.; Üzer, E.; Mishra, V.; Oliynyk, A.O.; Nilges, T.; Mar, A. Synthesis, structure, and properties of rare-earth germanium sulfide iodides RE3Ge2S8I (RE = La,Ce, Pr). Journal of Solid State Chemistry 274, 2019, 162–167. [DOI]

    33. Thiessen, A.N.; Ha, M.; Hooper, R.W.; Yu, H.; Oliynyk, A.O.; Veinot, J.G.C.; Michaelis, V.K. Silicon Nanoparticles: Are they Crystalline from the Core to the Surface? Chemistry of Materials 31, 2019, 678–688. [DOI]

    32. Han, K.-B.; Chong, S.K.; Oliynyk, A.O., Nagaoka, A.; Petryk, S.; Scarpulla, M.A.; Deshpande, V.V., Sparks, T.D. Enhancement in surface mobility and quantum transport of Bi2-xSbxTe3-ySey topological insulator by controlling the crystal growth conditions. Scientific Reports 8, 2018, 17290-1­–17290-10. [DOI]

    31. Zhang, D.; Oliynyk, A.O.; Duarte, G.M.; Iyer, A.K.; Ghadbeigi, L.; Kauwe, S.K.; Sparks, T.D.; Mar, A. Not just par for the course: 73 quaternary germanides RE4M2XGe4 (RE = La-Nd, Sm, Gd-Tm, Lu; M = Mn-Ni; X = Ag, Cd) and the search for intermetallics with low thermal conductivity. Inorganic Chemistry 57, 2018, 14249-14259. [DOI]

    30. Zhou, Y.; Askar, A.M.; Pöhls, J.-H.; Iyer, A.K.; Oliynyk, A.O.; Shankar, K.; Mar, A. Hexagonal double perovskite Cs2AgCrCl6. Zeitschrift für Anorganische und Allgemeine Chemie 2019, accepted October 15, 2018. [DOI]

    29. Bing, C.; Adutwum, L.A.; Oliynyk, A.O.; Luber, E.J.; Olsen, B.C.; Mar, A.; Buriak, J.M. How to Optimize Materials and Devices via Design of Experiments and Machine Learning: Demonstration Using Organic Photovoltaics. ACS Nano 12, 2018, 7434–7444. [DOI]

    28. Mishra, V.; Oliynyk, A.O.; Subbarao, U.; Sarma, S. Ch.; Mumbaraddi, D.; Peter, S.C. Complex Crystal Chemistry of Yb6(CuGa)50 and Yb6(CuGa)51 Synthesized at Non-Equilibrium Conditions. Crystal Growth & Design 18, 2018, 6091–6099. [DOI]

    27. Oliynyk, A.O.; Mar, A. Discovery of Intermetallic Compounds from Traditional to Machine-Learning Approaches. Accounts for Chemical Research 51, 2018, 59–68. [DOI]


    Publications as a postdoctoral researcher (University of Houston affiliation)

    26. Parry, M.; Couper, S.; Tehrani, A. M.; Oliynyk, A.O.; Brgoch, J.; Miyagi, L.; Sparks, T.D. Lattice strain and texture analysis of superhard Mo0.9W1.1BC and ReWC0.8 via diamond anvil cell deformation. Journal of Materials Chemistry A 7, 2020, 24012–24018 . [DOI]

    25. Tehrani, A.M.; Oliynyk, A.O.; Rizvi, Z.; Lotfi, S.; Parry, M.; Sparks, T.D.; Brgoch, J. Atomic substitution to balance hardness ductility and sustainability in molybdenum tungsten borocabide. Chemistry of Materials 31, 2019, 7696–7703. [DOI]

    24. Viswanathan, G.; Oliynyk, A.O.; Antono, E.; Ling, J.; Meredig, B.; Brgoch, J. Single Crystal Automated Refinement (SCAR): A Data-Driven Method for Solving Inorganic Structures. Inorganic Chemistry 58, 2019, 9004–9015. [DOI]

    23. Zhuo, Y.; Tehrani, A.M.; Oliynyk, A.O.; Duke, A.C.; Brgoch, J. Identifying an Efficient, Zero-Thermal Quenching Inorganic Phosphor Host via Machine Learning. Nature Communicatoins 9, 2018, 4377-1–4355-10. [DOI]

    22. Lotfi, S.; Oliynyk, A.O.; Brgoch, J. Polyanionic gold-tin bonding and crystal structure preference in REAu1.5Sn0.5 (RE = La, Ce, Pr, Nd). Inorganic Chemistry 57, 2018, 10736–10743. [DOI]

    21. Tehrani, A.M.; Oliynyk, A.O.; Parry, M.; Rizvi, Z.; Couper, S.; Lin, F.; Miyagi, L.; Sparks, T.D.; Brgoch, J. Machine learning directed search for ultraincompressible, superhard materials. Journal of the American Chemical Society 140, 2018, 9844–9853. [DOI]

    20. Oliynyk, A.O.; Gaultois, M.W.; Hermus, M.; Morris, A.J.; Mar, A.; Brgoch, J. Searching for Missing Binary Equiatomic Phases: Complex Crystal Chemistry in the Hf–In System. Inorganic Chemistry 57, 2018, 7966–7974. [DOI]

    19. Oliynyk, A.O.; Adutwum, L.A.; Rudyk, B.W.; Pisavadia, H.; Lotfi, S.; Hlukhyy, V.; Harynuk, J.J.; Mar, A.; Brgoch, J. Disentangling Structural Confusion through Machine Learning: Structure Prediction and Polymorphism of Equiatomic Ternary Phases ABC. Journal of the American Chemical Society 139, 2017, 17870–17881. [DOI]


    Publications as a graduate student (University of Alberta affiliation)

    18. Oliynyk, A.O.; Antono, E.; Sparks, T.D.; Ghadbeigi, L.; Gaultois, M.W.; Meredig, B.; Mar A. High-throughput machine-learning-driven synthesis of full-Heusler compounds. Chemistry of Materials 28, 2016, 7324–7331. [DOI]

    17. Oliynyk, A.O.; Adutwum, L.A.; Harynuk, J.J.; Mar, A. Classifying crystal structures of binary compounds AB through cluster resolution feature selection and support vector machine analysis.  Chemistry of Materials 28, 2016, 6672–6681. [DOI]

    16. Oliynyk, A.O.; Sparks, T.D.; Gaultois, M.W.; Ghadbeigi, L.; Mar, A. Gd12Co5.3Bi and Gd12Co5Bi, crystalline doppelgänger with low thermal conductivities. Inorganic Chemistry 55, 2016, 6625–6633. [DOI]

    15. Gaultois, M.W.; Oliynyk, A.O.; Mar, A.; Mulholland, G.J.; Sparks, T.D.; Meredig, B. Web-based machine learning models for real-time screening of thermoelectric materials properties. APL Materials 4, 2016, 053213-1–053213-11. [DOI]

    14. Lomnytska, Ya.; Babizhetskyy, V.; Oliynyk, A.O.; Toma, O.; Dzevenko, M.; Mar, A. Interaction of tantalum, chromium, and phosphorus at 1070 K: Phase diagram and structural chemistry. Journal of Solid State Chemistry 235, 2016, 50–57. [DOI]

    13. Sparks, T.D.; Gaultois, M.W.; Oliynyk, A.O.; Brgoch, J.; Meredig, B. Data mining our way to the next generation of thermoelectrics Scripta Materialia 111, 2016, 10–15. [DOI]

    12. Oliynyk, A.O.; Stoyko, S.S.; Mar, A. Many metals make the cut: quaternary rare-earth germanides RE4M2InGe4 (M = Fe, Co, Ni, Ru, Rh, Ir) and RE4RhInGe4 derived from excision of slabs in RE2InGe2. Inorganic Chemistry 54, 2015, 2780–2792. [DOI]

    11. Lomnytska, Ya.; Dzevenko, M.; Oliynyk, A.; Kushnir, I.; Toma, O. The phase equilibria and crystal structure of the phases in the Hf–Ti–P system. Journal of Alloys and Compounds 633, 2015, 75–82. [DOI]

    10. Oliynyk, A.O.; Djama-Kayad, K.; Mar, A. Investigation of phase equilibria in the quaternary Ce–Mn–In–Ge system and isothermal sections of the boundary ternary systems at 800 °C. Journal of Alloys and Compounds 622, 2015, 837–841. [DOI]

    9. Rudyk, B.W.; Stoyko, S.S.; Oliynyk, A.O.; Mar, A. Rare-earth transition-metal gallium chalcogenides RE3MGaCh7 (M=Fe, Co, Ni; Ch=S, Se). Journal of Solid State Chemistry 210, 2014, 79–88. [DOI]

    8. Oliynyk, A.O.; Djama-Kayad, K.; Mar, A. Ternary rare-earth manganese germanides RE3Mn2Ge3 (RE = Ce–Nd) and a possible oxygen-interstitial derivative Nd4Mn2Ge5O0.6. Journal of Alloys and Compounds 602, 2014, 130–134. [DOI]

    7. Toma, O.; Dzevenko, M.; Oliynyk, A.; Lomnytska, Ya. The Ti–Fe–P system: phase equilibria and crystal structure of phases. Central European Journal of Chemistry 11, 2013, 1518–1526. [DOI]

    6. Oliynyk, A.O.; Mar, A. Rare-earth manganese germanides RE2+xMnGe2+y (RE = La, Ce) built from four-membered rings and stellae quadrangulae of Mn-centred tetrahedral. Journal of Solid State Chemistry 206, 2013, 60–65. [DOI]

    5. Oliynyk, A.O.; Stoyko, S.S.; Mar, A. Quaternary germanides RE4Mn2InGe4 (RE = La–Nd, Sm, Gd–Tm, Lu). Inorganic Chemistry 52, 2013, 8264–8271. [DOI]

    4. Oliynyk, A.O.; Stoyko, S.S.; Mar, A. New ternary germanides RE3M2Ge3 (RE = Gd–Tm, Lu; M = Ru, Ir). Journal of Solid State Chemistry 202, 2013, 241–249. [DOI]

    3. Oliynyk, A.O.; Lomnytska, Ya.F; Dzevenko, M.V.; Stoyko, S.S.; Mar, A. Phase equilibria in the Mo−Fe−P system at 800 °C and structure of ternary phosphide (Mo1−xFex)3P (0.10 ≤ x ≤ 0.15). Inorganic Chemistry 52, 2013, 983–991. [DOI]

    2. Oliynyk, A.O.; Oryshchyn, S.V.; Lomnytska, Ya.F. New compounds and phase equilibria in the Zr–Ti–P system. Journal of Alloys and Compounds 545, 2012, 80–84. [DOI]

    1. Lomnytska, Ya.; Oliynyk A. The refinement of the components interaction in the system Zr–Nb–P. Visnyk of the Lviv University. Series Chemistry 53, 2012, 36–41.